
Task Optimization in Grid Computing using 

Genetic Algorithm 
 

Ujjwal Prajapati1, Subarna Shakya2 

Department of Electronics and Computer Engineering 

Central Campus, IOE, Tribhuvan University, Nepal 

meujjwal @gmail.com1, drss@ioe.edu.np2 
 

 

Abstract—Task scheduling is a key problem in Grid computing 

in order to benefit from the large computing capacity of such 

systems. The need of allocating a number of tasks to different 

resources for the efficient utilization of resources with minimal 

completion time and economic cost is the essential requirement in 

such systems. The problem is multi-objective in its general 

formation, with the objectives being the minimization of 

makespan of the system along the economic cost. An optimal 

scheduling could be achieved minimizing the completion time 

and economic cost using the heuristic approach, which is chosen 

to be Genetic Algorithm. The ability of Genetic Algorithm to 

simultaneously search different regions of a solution space makes 

it possible to find a diverse set of solutions for difficult problems. 

Each individual is represented as possible solution. The solutions 

are the schedulers for efficiently allocating jobs to resources in a 

Grid system 
  Keywords— Task Scheduling; Grid Computing; Distributed 

Computing; Makespan; Economic Cost; Genetic Algorithm 

I.  INTRODUCTION  

A computational grid is a large scale, heterogeneous 

collection of autonomous systems, geographically distributed 

and interconnected by heterogeneous networks [3]. A 

computational grid contains resource management, task 

scheduling, security problems, and information management 

and so on. Task scheduling is one of the fundamental issues 

which play an important role in the operation of distributed 

computing systems. Task scheduling in distributed computing 

systems is defined as the process of assigning the tasks of a 

distributed application into the available processors, and 

specifying the start execution time of the tasks assigned to 

each processor [1]. The problem of task allocation in 

distributed computing system is the need to allocate a number 

of tasks to different processors for execution. A task is an 

atomic unit to be scheduled by the scheduler and assigned to a 

resource [2]. A task scheduling is the mapping of tasks to a 

selected group of resources which may be distributed in 

multiple administrative domains [2]. In the case of static 

scheduling, information regarding all resources in the Grid as 

well as all the tasks in an application is assumed to be 

available by the time the application is scheduled [2]. The 

application centric objective function in Grid computing could 

be either make span, which is the time spent from the 

beginning of the first task in a job at the end of the last task of 

the job, or economic cost that an application needs to pay for 

resource utilization [2]. Job Scheduling is known to be NP-

complete; therefore the use of heuristics is the de facto 

approach in order to cope in practice with its difficulty [3]. 

The meta-heuristics run on static instances of the problem and 

therefore in this approach static schedulers are obtained. A 

Genetic Algorithm is a meta-heuristic search technique which 

allows for large solution spaces to be partially searched in 

polynomial time, by applying evolutionary techniques from 

nature [6]. 

II. LITERATURE REVIEW 

In Distributed Computing System, an allocation policy 
may be either static or dynamic, depending upon the time at 
which the allocation decisions are made. In a static task 
allocation, the information regarding the tasks and processor 
attributes is assumed to be known in advance, before the 
execution of the tasks. Distributed Computing Systems have 
become a key platform for the execution of hydrogenous 
applications. The major problem encountered when 
programming such a system is the problem of task allocation. 
Task allocation problem is known to be NP-hard problem in 
complexity, where required an optimal solution to the 
problem. The easiest way to finding an optimal solution to the 
problem is an exhaustive enumerative approach. But it is 
impractical, because there are nm ways of allocation m-tasks to 
n-processors. 

Ahmed Younes. Hamed [4] presents a genetic algorithm, 
considering distributed computing system with heterogeneous 
processors in order to achieve optimal cost by allocating the 
tasks to the processors, in such a way that the allocated load 
on each processor is balanced. The algorithm is based on the 
execution cost of a task running on different processors and 
the task communication cost between two tasks to obtain the 
optimal solution. The proposed algorithm tries to minimize the 
processor execution cost and inter processor communication.  

Javier Carretero, Fatos Xhafa [3] presents an extensive 
study on the usefulness of Genetic Algorithms for designing 
efficient Grid Schedulers when makespan and flowtime are 
minimized under hierarchic and simultaneous approaches. 
Two encoding schemes have been considered and most of GA 
operators for each of them are implemented and empirically 
studied.  

Mohammad I. Daoud and Nawwaf Kharma [1] proposed 
customized genetic algorithm to produce high-quality task 
schedules for Heterogeneous Distributed Computing Systems. 
Also, the performance of the scheduling algorithm is 
compared to two leading scheduling algorithms which is based 
on both randomly generated task graphs and task graphs of 

The 10th International Conference on e-Business (iNCEB2015) 
                                                         November 23rd - 24th 2015



certain real-world numerical applications, exhibits the 
supremacy of the new algorithm over the older ones, in terms 
of schedule length, speedup and efficiency.  

Prateek Kumar Singh, Neelu Sahu [5] proposed compact 
genetic algorithm, which aims to generate an optimal schedule 
so as to get the minimum completion time while completing 
the tasks. 

III. GENETIC ALGORITHM AND SCHEDULING 

A Genetic Algorithm is a meta-heuristic search technique 
which allows for large solution spaces to be partially searched 
in polynomial time, by applying evolutionary techniques from 
nature. Genetic Algorithm is high level algorithms that 
integrate other methods and genetic operators, therefore in 
order to implement it for a problem, we have to use the 
template for the method and design the inner methods, 
operators and appropriate data structures [5]. 

A. Schedule Encoding 

In grid scheduling, we have a set of tasks and a set of 
resources as input and a sequence, which informs that which 
task is to be operated on which resource and in which order as 
output. So, a population approach is acceptable with each 
individual in a population representing the scheduling 
solution. If we represent a set of task as X = {t1, t2, t3,….tn} 
and set of resources as P = {P1, P2, P3,… Pn}, then the 
sequence can be represented as shown in Fig 1. [4] 

The chromosome is represented as string of integers. The 
length of chromosome is given by the number of tasks that 
should be allocated. Every gene in the chromosome represents 
the processor or resource which the task is running on.  

From the allocation as shown, it is known that task t1 
should be run on resource P1, task t2 should be run on resource 
P3 and so on. 

B. Initialization  

The initial population is generated randomly.  Given the 
population size, the random strings of integers are formed of 
definitive chromosome length evaluated from the number of 
task set to form the initial population.  

C. Fitness Function 

The execution cost of a task running on different 
processors are different and it is given in the form a matrix of 
order m * n, named as execution cost matrix (ECM) [4]. 
Similarly, the inter task communication cost between two 
tasks is given in the form of a symmetric matrix named as 
inter task communication cost matrix (ITCCM), of order m * 
m [4]. The makespan is expressed in terms of Expected Time 
to compute matrix (ETC) of size m*n. 

D. Execution Cost (EC) 

The execution cost (ecik) of a task ti , running on a 
processor Pk is the amount of the total cost needed for the 
execution of ti on that processor during the execution process. 
If a task is not executable on a particular processor, the 
corresponding execution cost is taken to be infinite [4]. 

 

t1                        t2 t3 t4 .. .. tm 

P1 P3 P1 P2 .. .. Pn 

Fig 1. Task Allocation in the form of chromosome [4] 

E. Communication Cost (CC) 

The communication cost ccij incurred due to the inter task 
communication is the amount of total cost needed for 
exchanging data between ti and tj residing at separate 
processor during the execution process. If two tasks executed 
on the same processor then ccij = 0 [4] 

F. System Cost 

Given a task allocation X = {xik}, i = 1,2,3,….m, k=1,2,3,.. 
n, the execution cost of all processors can be computed by the 
following equation: [4] 

      PEC(X) = ∑n
k=1∑m

i=1 ecik xik    (1) 

The inter processor communication cost for all processors 
can be computed as follows: [4] 

     IPEC(X) = ∑n
k=1∑m

i=1∑j>i∑b≠k ecik xik xjb (2) 

The system cost which is defined as the sum of the 
execution and communication cost is computed as follows: 

        C(X) = PEC(X) + IPEC(X)   (3) 

G. Expected Time to Compute 

An Expected Time to compute makes an estimation of the 
computational load of each job, the computing capacity of 
each resource, and an estimation of the prior load of each one 
of the resources. Each position in ETC[t][m] indicates the 
expected time to compute job t in resource m [3].  

    M(X) = min {∑ {j ε jobs | schedule[j] = m} ETC[j][m] }   (4) 

 
Thus, we need to minimize the system cost and the 

makespan which is to allocate each of the m tasks to one of the 
n processors. Hence our fitness function is: 

Min {C(X) + M(X) = PEC(X) + IPEC(X) + M(X)}      (5) 

H. Crossover 

Crossover provides the important operation in evolutionary 
algorithm. The crossover operation is used to obtain new 
individuals (descendants) by selecting individuals from the 
parental generation and interchanging their genes. The aim is 
to obtain descendants of better quality that will feed the next 
generation and enable the search to explore new regions of 
solution space not yet explored [3]. 

I. One-point crossover 

Given two parent solutions, this operator, first chooses a 
position between 1 and n; where n is the chromosome length 
of a chosen individual. The resulting position serves as a 
‘cutting point’ splitting each parent into two segments. Then, 
the two first parts of the parents are interchanged yielding two 
new descendants [3]. Also, the first part and the later part of 
the parents could be exchanged to form two new descendants; 
the converse is true. The illustration is as shown in Fig 2. 

Ujjwal Prajapati and Subarna Shakya



J. Mutation 

The mutation operation is performed on a single gene 
strand basis. The mutation operation will perform if the 
mutation ratio (Pm) is verified. The point to be mutated is 
selected randomly. The illustration is as shown in Fig 3. 

K. Selection 

Selection operators are used to select the individuals to 
which the crossover operators will be applied. The fitness 
proportionate selection, also known as roulette wheel selection 
is chosen for recombination.  

In fitness proportionate selection, as in all selection 
methods, the fitness function assigns fitness to possible 
solutions or chromosomes. The fitness level is used to 
associate a probability of selection with each individual 
chromosome.  

If  fi is the fitness of individual i in the population, its 
probability of being selected is 

𝑝𝑖 =
𝑓𝑖

∑ 𝑁 𝑓𝑗
𝑗 = 1

 

where N is the number of individuals in the population [7]. 

This could be imagined similar to a Roulette wheel. 
Usually a proportion of the wheel is assigned to each of the 
possible selections based on their fitness value. This could be 
achieved by dividing the fitness of a selection by the total 
fitness of all the selections, thereby normalizing them to 1. 
The illustration is as shown in Fig 4. 

L. Stopping Criteria 

Stopping Criteria is fulfilled from either one of the below: 

i. Generation 
ii. Required Fitness 

The generation is set at some fixed value like 100, 1000 
for example on fulfillment of which the algorithm stops.  

Since we don’t have fix value of required fitness, a 
minimum arbitrary value could be set on fulfillment of which 
the algorithm stops. 

     ↓ Cutting point 

Parent 1 1 2 1 1 2 1 2 3 

Parent 2 2 3 1 2 1 3 2 1 

Child 1 1 2 1 1 1 3  2 1 

Child 2 2 3 1 2 2 1 2 3 

 

Fig 2.One-point Crossover 

 
Parent 1 3 2 1 2 3 

Child 1 3 3 1 2 3 

Fig 3. Mutation 

Fig 4. Roulette Wheel Selection 

IV. RESULT ANALYSIS 

The result set shows the optimal solution for the input data 
set using the genetic algorithm. The solutions are derived 
using different parameter set. Each parameter set comprises of 
the necessary parameters for the algorithm. The variant 
population size in the parameter set provides the variant 
solution space which enables the algorithm to find a diverse 
set of solutions from the larger solution space. The input data-
set can be considered as shown in Fig 5 and 6. The input data-
set is taken from the reference papers and then arbitrarily 
replicated to test the performance of the algorithm. The data is 
expressed in the units of cost for execution cost matrix and in 
the units of time for expected time to compute matrix. 

Processor P1 P2 P3 

Task 

t1 174 176 110 

t2 95 15 134 

t3 196 79 156 

t4 148 215 143 

t5 44 234 122 

t6 241 225 27 

t7 12 28 192 

t8 215 13 122 

t9 211 11 208 

Fig 5. Data-set: Execution Cost Matrix [4] 

Processor P1 P2 P3 

Task 

t1 25137.5 52468 150206 

t2 30802.6 42744.5 49578.3 

t3 242727.1 661498.5 796048.1 

t4 68050.1 303515.9 324093.1 

t5 6480.2 42396.7 98105.4 

t6 175953.8 210341.9 261825.0 

t7 116821.4 240577.6 241127.9 

t8 36760.6 111631.5 150926 

t9 383709.7 442605.7 520276.8 

Fig 6. Data-set: Expected Time to Compute Matrix 

Run Population Cost Make span 

3 121113122  640 1318023 

4 212113122  605 1752183 

15 121111111  1256 1098384.9 

34 322113122  459 1861862.9 

Fig 7. Summary of Output Solution for Test Data set with Parameter Set 1 

Run Population Cost Make span 

6 221113122  642 1345353.5 

17 121111111  1256 1098384.9 

25 322113232  584 2024913.6 

42 322313222  470 2241662.1 

Fig 8. Summary of Output Solution for Test Data set with Parameter Set 2 

 

Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

The 10th International Conference on e-Business (iNCEB2015) 
                                                         November 23rd - 24th 2015



The input data-set is fed into the algorithm taking different 
GA parameters as shown in Fig 10 or Fig 11. The algorithm is 
ran multiple instances and with each instance, it tries to find 
the suitable solution. For the input data-set with the different 
parameter set, the output can be summarized as shown in Fig 7 
and Fig 8. 

As we can see, we have the diverse set of solutions with 
the optimal values. The optimum could be from cost 
perspective or make span perspective. If we see for cost 
values, then we achieve the cost of 640 units at the make span 
of 1318023 units, now if we further optimize the cost to 605 
units, the make span increment to 1752183 units. If we try to 
optimize make span, we have the make span of 1098384.9 
units, and our cost increments to 1256 units which is quite 
drastic if we try to achieve both cost and make span. One other 
solution with the cost 459 units and make span 186186.9 units 
seems quite optimal in comparison to other solutions as the 
cost is quite low and we don’t have to sacrifice much for make 
span as well. The optimal solution for the input data set can 
illustrated as shown in Fig 9.  

Using different parameter set provides variant optimal 
solutions. With the increase in population size, the solution 
space increases which provides more efficient and optimal 
solutions. The population size herein is doubled in case of 
second parameter set. With the larger solution space, it is more 
likely to find the diverse set of solutions, which enables more 
optimality and efficiency.  

With the increase in crossover probability, it is likely to 
find the diverse set of solutions as individuals undergoes 
interchanging their genes. The more interchange takes place, 
the more diversity is achievable. With crossover, it does not 
only guarantee the optimality but also could decrease it. It is 
likely to find the fit individual after crossover but sometimes, 
the fit individual could undergo crossover and end up in worst 
or unfit individual. So, the best individual needs to be 
preserved with generations which guarantee elitism. The 
crossover probability is chosen between 60-80% to guarantee 
the best individual is preserved. The comparison of the output 
between the parameter sets can be shown in Fig 10, 11 and 12. 
The horizontal x-axis in Fig 12 represents the cost value in the 
units of cost and vertical y-axis represents the make span in 
the units of time. 

t1 t2 t3 t4 t5 t6 t7 t8 t9 

3 2 2 1 1 3 1 2 2 

Fig 9. Optimal Solution for Test Data Set 

GA Parameters Value 

Population Count 10 

Crossover Probability 0.8 

Mutation Probability 0.01 

Chromosome Length 9 

Chromosome 123 

Processor Count 3 

Task Count 9 

Generation 100 

Fig 10. Parameter Set 1 

 

GA Parameters Value 

Population Count 20 

Crossover Probability 0.8 

Mutation Probability 0.01 

Chromosome Length 9 

Chromosome 123 

Processor Count 3 

Task Count 9 

Generation 100 

Fig 11. Parameter Set 2 

 

Fig 12. Comparison of Parameter Sets for Test Data Set 

From the analysis we saw that, the optimality can be seen 
from different perspectives in case of multiple objectives and 
there isn’t a single fixed optimal solution. We suggested the 
pool of optimal solutions and chose the best among them to be 
optimal. Also, with parameter tuning we formed the larger 
solution space to find the diversity which enables to find more 
diverse optimal solutions. The users are allowed to choose one 
solution among the others which meet their requirement and 
necessity. It isn’t essential to have only one solution in case of 
multi-objective optimization. 

V. CONCLUSION 

In this paper, we implemented the genetic algorithm to 

optimize the task scheduling problem both from time and cost 

perspective, providing the optimal solutions which are the 

schedulers for efficiently allocating jobs to resources in a grid 

system. The algorithm only considered static schedulers and 

does not consider grid characteristics such as consistency of 

computing, heterogeneity of resources and jobs.  

 

ACKNOWLEDGMENT  
Ujjwal P. would like to express his gratitude to all the 

faculty members of Electronics and Computer Engineering 
Department who are directly/indirectly involved in inspiring 
and motivating him to carry out this research, along with his 
colleagues for their continuous idea sharing and discussion, 
which have definitely paved the path to succeed this research. 

REFERENCES 

[1] Mohammad I. Daoud and Nawwaf Kharma, “An Efficient Genetic 
Algorithm for Task Scheduling in Heterogeneous Distributed 
Computing Systems”, July 2006. 

0

5

10

15

20

25

0 5 10 15

x 
1

0
0

0
0

0

Hundreds

Parameter Set 1 Parameter Set 2

Ujjwal Prajapati and Subarna Shakya



[2] Fangpeng Dong and Selim G. Akl “Scheduling Algorithms for Grid 
Computing: State of the Art and Open Problems”, January 2006. 

[3] Javier Carretero, Fatos Xhafa “Genetic Algorithm Based Schedulers for 
Grid Computing Systems”, Vol 3, No. 6, December 2007. 

[4] Ahmed Younes. Hamed “Task Allocation for Minimizing Cost of 
Distributed Computing Systems using Genetic Algorithms”, Vol 2, Issue 
9, September 2012. 

[5] Prateek Kumar Singh, Neelu Sahu “Task Scheduling in Grid Computing 
Environment Using Compact Genetic Algorithm”, Vol3, Issue 1, 
January 2014. 

[6] Andrew J. Page and Thomas J. Naughton “Framework for task 
scheduling in heterogeneous distributed computing using genetic 
algorithms”, Department of Computer Science, National University of 
Ireland, Maynooth, County Kildare, Ireland. 2005. 

[7] https://en.wikipedia.org/wiki/Fitness_proportionate_selection 

The 10th International Conference on e-Business (iNCEB2015) 
                                                         November 23rd - 24th 2015




