
The 10th International Conference on e-Business (iNCEB2015)

November 23rd - 24th 2015

An Interoperability Ontology for Multi-Cloud

Computing Platforms

Surachai Huapai, Thepparit Banditwattanawong

School of Information Technology, Sripatum University, Thailand

Abstract—In a multi-cloud environment, there are usually

several cloud computing platforms with different features being

deployed in the same or different organizations.This leads to the

need to interoperate between different cloud platforms. This paper

presents an ontology towards a cloud broker system to achieve the

interoperability among multi-cloud platforms specifically

OpenStack and CloudStack. We validated our ontology by means

of platform command data fulfillment against the ontology. The

result was that our ontology supported thecommands of both of

the platforms.

Keywords—multi-cloud computing;cloud broker; ontology;

openstack; cloudstack

I. INTRODUCTION

There are several reasons that mandate multi-cloud
computing as the following examples. First, when different
organizations become partner and cloud resource sharing is
mutually approved. Second, when there are unique features
(e.g., server application images, operating system images, tools,
and security offered) offered by different cloud computing
platforms. Third, to prevent platform lock-in problem in risk
management or financial management. [1] In these situations,
not only multiple cloud platforms co-exist but also their
resources are shared as a pool.

One of the techniques used to accomplish multi-cloud
platform interoperability issue is by using cloud broker [2]. A
cloud broker is a system that is capable of communication
between two or more different cloud platforms to achieve a
given task. This paper focuses on two popular cloud computing
IaaS platforms, OpenStack [3] and CloudStack [4]. For a
practical example, when users want to create a virtual machine
(VM) of certain main memory, storage capacity, operating
system image and probably development kit, they cloud simply
issue a GUI-based requirements via a cloud broker that in turn
figures out the available resources that most match the user
requirement and finally creates the VM as commanded by the
broker.

As exemplified above, the broker system must have a
knowledge base for recognizing the user requirementsand
transforming them into valid administration commandsfor
desired cloud computing platforms. The knowledge base can be
represented in the form of an ontology, which is defined as a
formal explicit description of concepts (classes) in a domain of
discourse, properties of each concept, and (role) restrictions on
properties. [5] Any ontology can be verified and validated in

three standard ways: application implementation, data storing
and experts. This research proposes a novel ontology for
interoperability between OpenStack and CloudStack towards
the cloud broker system.

As for related works, there are several papers in the field of
cloud computing interoperability such as [1, 2, 6]. However,
they do not support the interoperability between OpenStack and
CloudStack at the same time. There are also works pertained to
cloud ontologies including [7, 8, 9]. Nevertheless, they aim for
resource description, service discovery or security instead of
interoperability.To recap, there is no existing workon an
ontology specifically developedfor OpenStack and CloudStack
interoperability, which is our contribution.

II. A PROPOSED ONTOLOGY

Our proposed ontology contains threeconcepts of IaaS
service model as showed in Fig.1: computing devices, REST
control, and server template.Each of the concepts has associated
properties as will be detailed later on. We developed our
ontology by using Protégé software tool [10].

Fig. 1. All classes in our proposed cloud interoperability ontology.

The three classes of the ontology are described as follows.

 First, class Compute_Devices represents totally available
VM resources that comprise four subclasses representing
virtualized CPU cores, virtualized RAMs, virtualized
storage space, and virtualized network. Any resources to be
consumed on both of the IaaS platforms must be registered
with this class so that a resource pool is created for cloud
broker.

Surachai Huapai, Thepparit Banditwattanawong

 Second, REST_Controlclass represents the RESTful
platform command sets of CloudStack and OpenStack. This
class has two subclasses forVM deployment commands and
resource checking commands where the cloud broker
system selectively fetches to issue commands to
corresponding target cloud platforms.

 Finally, class Server_Template represents the server
environment configurations and server image deployment
command script of various system applications: file servers,
database servers and web servers. Users must also decide
the applicability types of their VMs based on these
configurations then the cloud broker creates a
corresponding image deployment commands to be executed
on a target cloud platform.

III. EVALUATION

We evaluated our ontology by means of storing two types
of data sets: platform-specific commands and platform-
independent resource specification data. These data setswere
used to filled out the properties of the representative class
instancescreated based on the ontology.

A. REST_Control class

First, we validated REST_Control class and its subclasses
against CloudStack commands but described herein only a
representative one, VM creation command (Fig.2) against
Deploy_Virtualized subclass, for the sake of conciseness.

Fig. 2. CloudStack’s VM creation RESTfulcommand.

http://192.0.2.10/client/api?

command=deployVirtualMachine

&serviceOfferingId=1

&diskOfferingId=1

&templateId=2

&zoneId=4

&cpunumber=2

&cpuspeed=1000000

&memory=2000000

&size=100000000

&apiKey=miVr6X7u6bN_sdahOBpjNejPgEsT35eXq-

jB8CG20YI3yaxXcgpyuaIRmFI_EJTVwZ0nUkkJbPmY3y2bciKwFQ

&signature =Lxx1DM40AjcXU%2FcaiK8RAP0O1hU%3D

The command is composed of three portions as follows.
Base URL is the base URL to the cloudbroker.API Path is the

path ("/client/api?") to the API Servlet that processes the

incoming requests. Command String is the part of the query
string comprises of the command, its parameters, API Key that
identifies the account, and signature hash created to
authenticate user account executing API command.We found
that the command in Fig.2 along with related meta data could
be filled in into the instance properties of Deploy_Virtualized
subclass of the ontology completely as showed in Fig.3.

Similarly, we verified REST_Control class and its
subclasses against OpenStack commands whose representative
one is presented in Fig.4 comprising base URL, API path and
command string for OpenStack platform. We could fill in this
command and its meta data against the ontology’s
Deploy_Virtualized subclass seamlessly as in Fig.5.

The thorough validations using full data sets, whose parts
are described above, proved that REST_Control class is

complete for realizing interoperability between CloudStack and
OpenStack.

Fig. 4. OpenStack’s VM creation RESTful command.

http://192.0.2.10/client/api?

command=CreateVM

&state=present

&login_username=admin

&login_password=admin

&login_tenant_name=admin

&name=OpenStackVM01

&image_id=4f905f38-e52a-43d2-b6ec-754a13ffb529

&key_name=ansible_key

Fig. 3. Deploy_Virtualized class with CloudStack’s VM creation command

filled out.

Fig. 5. Deploy_Virtualized class with OpenStack’s VM creation command

filled out.

http://192.0.2.10/client/api
http://192.0.2.10/BrokerOpenStack/api

The 10th International Conference on e-Business (iNCEB2015)

November 23rd - 24th 2015

&wait_for=200

&flavor_ram=4096
B. Server_Template class

We validated Server_Template class and its subclasses by
using platform-independent resource specification data that is
server image preconfiguration data, which is bound to the other
class Compute_Devices. For the sake of conciseness, we select
to show only subclass Template_Web_Server, representing
virtual web server preconfiguration, with filled-up
representative data for CloudStack and OpenStack in Fig.6 and
Fig.7, respectively.In this way, the Server_Template class of
our ontology was verified and validated.

C. Compute_Devices class

Finally, we also used platform-independent resource
specification data to validate Compute_Devices class and its
subclasses. We illustrate here merely subclass Core_Virtualized
with filled-in sample computing resource pool characteristics
for CloudStack and OpenStack in Fig.8 and Fig.9, respectively.

To recap, our proposed ontology is valid for CloudStack and
OpenStack platform commands and platform-independent
resource specification datathat altogether aim forthe life-cycle

Fig. 6. Template_Web_Server class with test data and CloudStack’s image

loading command filled out.

Fig. 7. Template_Web_Server class with test data and OpenStack’s image

loading command filled out.

Fig. 8. Core_Virtualized class with test data for CloudStack.

Fig. 9. Core_Virtualized class with test data for OpenStack.

Surachai Huapai, Thepparit Banditwattanawong

management of the virtual servers of various application kinds.
At a further stage, we plan to validate and utilize our ontology
in even more practical way by implementing a cloud broker
system that is capable of interoperability issue solving.

CONCLUSION

This paper presents a novel ontology for interoperability
among CloudStack and OpenStack IaaS platforms. The
ontology was designed to support the core requirements for
managing virtual server life cycles. We assessed the ontology
by means of practical data containment. As our future research,
the ontology will be used to implement the knowledge base for
the operation of a cloud broker system.

ACKNOWLEDGMENT

We would like to thank Rattanabundit University fora
Doctoral scholarship.

REFERENCES

[1] T.S.Somasundaram, K.Govindarajan, MR.Rajagopalanand
S.Madhusudhana Rao, “An Architectural Framework to Solve the
Interoperability Issue Between Private Clouds Using Semantic
Technology,” IEEE ICRTIT. India, pp.162-167, April 2012.

[2] N.Loutas, E.Kamateri, F.Bosi and K.Tarabanis, “Cloud computing
interoperability: the state of play,” IEEE CloudCom. Athens Greece,
pp.752-757, 29 Nov - 01 Dec 2011.

[3] OpenStack(2015, August). OpenStack [Online]. Available:
https://www.openstack.org

[4] Apache CloudStack (2015, August). CloudStack [Online]. Available:
https://cloudstack.apache.org

[5] N.Drummond, S.Jupp, G.Moulton and R.Stevens , “A Practical Guide To
Building OWL Ontologies Using Protégé 4 and CO-ODE Tools,” Edition
1.2, March 13, 2009, pp. 9-33..

[6] B.Rashidi, M.Sharifi and T.Jafari, "A Survey on Interoperability in the
Cloud Computing Environments," I.J. Modern Education and Computer
Science, pp.17-23, June 2013.

[7] D.Androcec, N.Vrcek and J.Seva,"Cloud Computing Ontologies: A
Systematic Review," The 2012International Conference on Models and
Ontology-based Design of Protocols, Architectures and Services, pp.9-14,
7 February 2012.

[8] T.Han and K.M.Sim,"An Ontology-enhancedCloud Service Discovery
System," International MultiConterence of Engineers and Computer
Scientists 2010, 17-19 March 2010.

[9] C.Choi, et.al., “A Design of Onto-ACM(Ontology based Access Control
Model) in Cloud Computing Environments,” Journal of Internet Services
and Information Security, vol. 2, no. 34, pp. 54-64, 2012.

[10] Stanford University (2015, August). protege [Online]. Available:
http://protege.stanford.edu/

https://www.openstack.org/
https://cloudstack.apache.org/
http://protege.stanford.edu/

